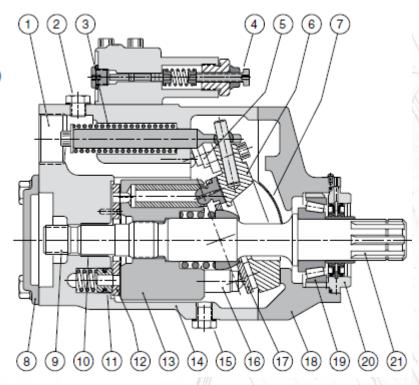
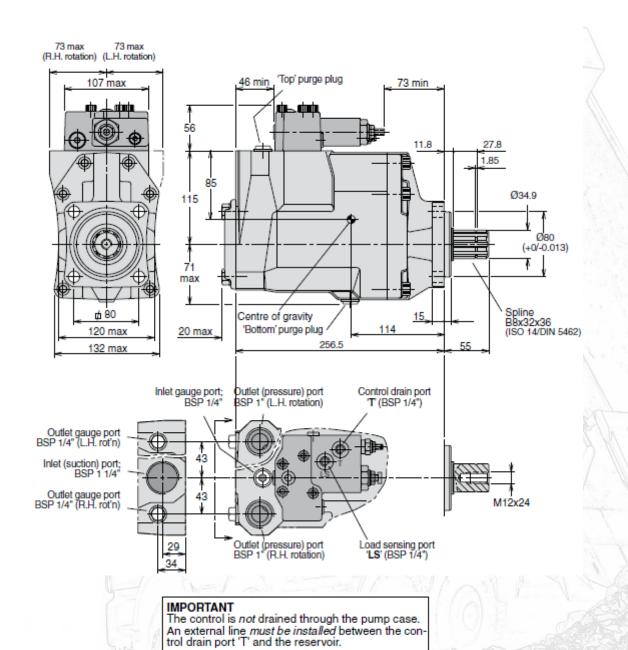


Specifications


Frame size VP1	045	060	075	095	110	130
	045	000	0/5	095	110	130
Displacement [cm ³ /rev]	45	60	75	95	110	128
Max operating pressure [bar]						
continuous	350	350	350	400	400	400
intermittent 1)	400	400	400	420	420	420
Mass moment of inertia J [kgm ²]	0.00606	0.00606	0.00606	0.00681	0.00690	0.00690
Shaft speed 2) [rpm]						
 short circuited pump (low press.) 	3000	3000	3000	3000	3000	3000
 max selfpriming speed ²⁾ 	3000	2700	2500	23003)	22003)	21003)
Control type	LS					
Shaft end spline	DIN 5462					
Mounting flange	ISO 7653-1985					
Weight (with control) [kg]	27					

- 1) Max 6 seconds in any one minute.
- At an inlet pressure of 1.0 bar (abs.) with mineral oil at a viscosity of 30 mm²/s (cSt).
- 3) Valid with 3" inlet (suction) line


VP1-045/-060/-075 cross section

- 1. Inlet port
- 2. 'Top' purge plug
- 3. Return spring
- 4. Control
- 5. Setting piston (one of two)
- 6. Swash plate
- 7. Bearing shell
- 8. End cover
- Spline (for mounting an auxiliary pump)
- 10. Plain bearing
- 11. Hold-down plunger
- 12. Valve plate
- 13. Cylinder barrel
- 14. Barrel housing
- 15. 'Bottom' purge plug
- 16. Piston with piston shoe
- 17. Retainer plate
- 18. Bearing housing
- 19. Roller bearing
- 20. Shaft seals with carrier
- 21. Input shaft

VP1-045, -60 and -075

LS valve block VP1-045/-060/-075

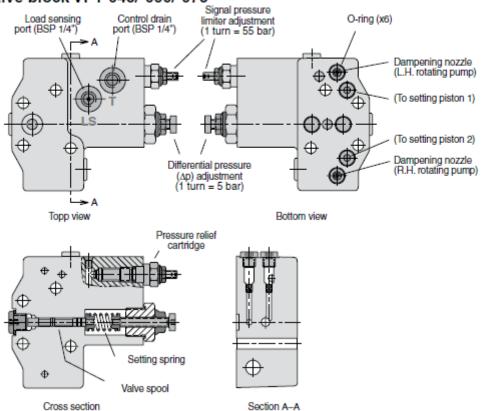


Fig. 2. LS valve block.

Through-shaft coupling VP1-045/-060/-075

The VP1 pump has a through-shaft which means that an additional pump, such as a fixed displacement F1, can be installed in tandem with the VP1 by means of an adaptor kit (fig. 3).

NOTE: The bending moment caused by the weight of a tandem assembly normally exceeds that allowed by the PTO.

To prevent damage, the auxiliary pump should be supported by a bracket attached to the gearbox; it must not be fastened to the truck chassis.

Likewise, when the tandem assembly is installed on a separate bracket and driven by a cardan shaft, the auxiliary pump should have a support attached to the pump bracket.

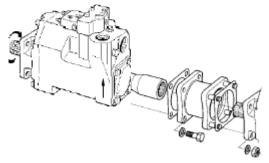


Fig. 3. Adaptor kit (P/N 379 7795) for tandem coupling.

VP1 in load sensing systems

When installed in a load sensing system, the VP1 supplies the correct amount of flow required by the various work functions currently engaged.

This means that energy consumption and heat generation are minimised and much reduced in comparison with a fixed displacement pump used in the same system.

Diagram 1 shows the required power (flow times pressure) in a constant flow system with a fixed displacement pump.

Pressure Comer power

PMax

Wasted power

PLoad power

QLoad 1-3

QMax

Flow

Diagram 1. Constant flow system with a fixed displacement pump.

Diagram 2 shows the sharply reduced power requirement in a load sensing system with a variable displacement pump such as the VP1.

In both cases the pump pressure is slightly higher than what is required by the heaviest load ('Load 2') but the VP1, because of the much smaller flow being delivered, needs only the power indicated by the shaded area 'Load power'.

In a constant flow system, on the other hand, excess fluid is shunted to tank and the corresponding power, 'Wasted power' (shown in diagram 1), is a heat loss.

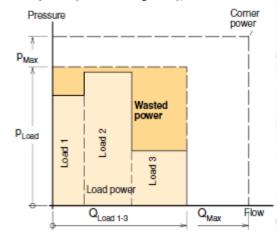


Diagram 2. Constant flow system with a variable displacement pump (e.g. VP1).

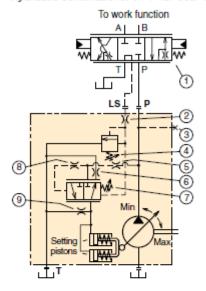
Systems comparison

System	Constant flow	Load-sensing		
Pump	Fixed displ.	VP1 variable displ.		
Pump adjustments	Pressure only	Pressure and flow		
Load*	Some influence	Some influence		
Energy				
consumption	High	Low		
Heat generation	High	Low		

Simultaneous operation of loads with non-equal flows and pressures; refer to the above diagrams.

LS load sensing control function

Refer to corresponding hydraulic schematic below.


A selected 'opening' of the directional control valve spool corresponds to a certain flow to the work function. This flow, in turn, creates a pressure differential over the spool and, consequently, also a Δp between the pump outlet and the LS port.

When the differential pressure decreases (e.g. the directional valve is 'opened' further) the Δp also decreases and the LS valve spool moves to the left. The pressure to the setting pistons then decreases and the pump displacement increases.

The increase in pump displacement stops when the Δp finally reaches the setting (e.g. 25 bar) and the forces acting on the valve spool are equal.

If there is no LS signal pressure (e.g. when the directional valve is in the neutral, no-flow position) the pump only delivers sufficient flow to maintain the standby pressure as determined by the Δp setting.

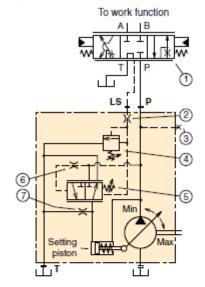
Hydraulic schematic for VP1-45/-060/-075

- 1. Directional, load sensing control valve
- 2. Load signal orifice (1.0 mm; fixed)
- 3. Gauge port
- 4. Signal pressure limiter adjustment
- System pressure dampening nozzle (2.0 mm)
- 6. Return line nozzle (0.6 mm)
- 7. Standby (Ap) pressure adjustment
- System pressure dampening orifice (fixed)
- 9. Bleed-off nozzle (0.6 mm).

LS control adjustments

Pressure limiter

Pump size	Factory setting [bar]	Max pressure intermittent [bar]
VP1-045/060/075	350	400
VP1- 095/110/130	350	420


LS load sensing valve

Pump size	Factory setting [bar]	Min pressure [bar]	Max pressure [bar]
VP1-045/060/075	25	20	35
VP1- 095/110/130	25	15	40

The factory setting, and the standard orifice sizes shown in the corresponding schematic below, will usually provide an acceptable directional valve characteristic as well as system stability.

For additional information, contact Parker Hannifin.

Hydraulic schematic for VP1-095/-110/-130

- 1. Directional, load sensing control valve
- 2. Load signal orifice (0.8 mm)
- 3. Gauge port
- 4. Signal pressure limiter adjustment
- 5. Standby (Δp) pressure adjustment
- System pressure dampening orifice (fixed)
- 7. Bleed-off nozzle (1.2 mm)